FLUORIDE TESTING AND FLUOROSIS MITIGATION IN SONEBHADRA DISTRICT

by

A.Gautam*, R.C.Tripathi*

1. INTRODUCTION

About 62 million people in India suffer from dental, skeletal and or non-skeletal fluorosis.⁽¹⁾ Of these, 6 million are children below the age of 14. Fluorosis is a crippling disease caused by fluoride concentrations above 1.5 mg/L in drinking water. In India about 20 states have been identified with a problem of excess fluoride in groundwater. Rural populations who are mainly dependent on groundwater for drinking purposes, are the worst affected. Since the late 1980s, government and non-government agencies have launched efforts to control the spread of fluorosis. Despite these efforts, reports continue to appear indicating an increasing spread of fluorosis. This can either be due to identification of an existing problem in a new area, or a fresh incidence striking a hitherto unaffected population due to local environmental changes.

Sonebhadra district lies in the eastern panhandle of Uttar Pradesh. Most of the wellknown "Singrauli industrial area" falls in it. Several industries like thermal power plants and Hindalco, situated in this area, are also potential sources of fluorides in water and air. Banwasi Seva Ashram (BSA), a local voluntary organization (VO), has identified many cases of fluorosis in dozens of villages of Chopan and Myorpur blocks. These blocks are dominated by tribal communities. Drinking water quality tests for fluoride content done by BSA in 1999 showed fluoride concentrations between 1.1 - 5.4 mg/L in surface water and 0.5 - 5.9 mg/L in groundwater.

With the help of BSA, Peoples' Science Institute (PSI) began a programme of fluoride testing and fluorosis mitigation in Sonebhadra district in September 2004. This paper presents the findings of the water quality tests and the accompanying health surveys. It also describes in a summary fashion the community-based activities for fluorosis mitigation planning.

II. METHODOLOGY

Health Survey

The staff and field workers of BSA helped identify villages where fluorosis cases had been reported. Medical professionals from BSA and PSI's research scientists carried out a dental fluorosis survey of children (ages 6 to 16 years) in 41 schools in the targeted villages during October-November 2004. Children from all the schools filled out survey questionnaires.

Water Quality Monitoring

Data gathered from the health survey of school children were summarized village-wise. Villages that had severe dental fluorosis in more than 50% children were selected for water quality monitoring. One hundred per cent monitoring of drinking water sources was done in

^{*} Research Scientist, Peoples' Science Institute, Dehra Doon

these villages between December 2004 and March 2005. The sources included open concrete and dug well, hand pumps, natural streams, rivers and ponds (bandha). The water quality of 1477 water sources in 21 villages was monitored. Water quality parameters like pH, electrical conductivity, alkalinity, total hardness, calcium hardness, calcium, and fluoride were analyzed in the water sources. Due to logistical constraints, only fluoride was monitored in the water sources of two villages, i.e., Chetwa and Ammadad.

Sample Collection and Analysis

Three temporary field laboratories were set up in the target area. Samples were collected in polyethylene bottles, which were vigorously washed with detergents and rinsed with distilled water. As a precaution, all the sample bottles were again washed vigorously with the water to be tested. These samples were analyzed within 24 hours of collection in the field laboratories.

Battery-operated handset pH and EC meters were used to test the pH and the electrical conductivity of the samples. Parameters other than fluoride such as alkalinity, total hardness, calcium hardness and calcium were analyzed by titrimetric methods. A fluoride ion meter (Model 290A+ Orion, USA) was used to analyze fluoride concentrations in the water samples. The standard methods of water analysis prescribed by the APHA were followed in analysis of all the parameters.⁽²⁾

Community-Based Fluorosis Mitigation Planning

A specially organized team of community workers, scientists and folk artists carried out a Sandesh Yatra for mobilizing the affected villages communities over three weeks in January '05 and February'05, covering all the targeted 21 village. They informed the communities about the levels of fluoride contamination in the domestic water sources of their villages, the nature of fluorosis and possible measures for mitigation of the problem. Activities like puppet shows, street plays, dialogues with the villagers, posters pasting and distribution of pamphlets on fluorosis were carried out in each targeted village. Mapping of the fluoride content in the different drinking water sources along with the affected households was also done in each village.

Once the water quality monitoring and Sandesh Yatra were over, a series of community meetings were held in each village to discuss plans for accessing safe water. The issues discussed at these meetings included options for mitigation, costs and management systems. Each village finally prepared detailed mitigation plans using this information.

III. RESULTS AND DISCUSSION

Health Survey

Over 3500 children participated in the dental fluorosis survey carried out in 41 primary, junior and higher secondary schools in the Chopan, Dudhi, Myorpur and Babhani blocks of Sonebhadra district. The survey results are summarized in Table 1.

S.No.	Description	Values
1.	No. of schools surveyed	41
2	No. of villages students are resident in	207
3	No. of villages with very high prevalence of fluorosis	18
4	No. of villages with moderate prevalence of fluorosis	82
5	No. of villages with mild prevalence of fluorosis	36
6	Total no of villages with fluorosis cases	136
7	Total no. of children surveyed	3588
8	No. of children affected by mild dental fluorosis	1300 (36%)
9	No. of children affected by moderate dental fluorosis	447 (12 %)
10	No. children affected by severe dental fluorosis	49 (1.2 %)
11	Total no. of children affected by dental fluorosis	1796 (50%)
12	No. of children with suspected dental fluorosis	424 (12%)
13	Total no. of children affected or suspected	2219 (62%)

Table: 1. Results of the Dental Fluorosis Survey

Water Quality of Village Water Sources

Table 2 shows a wide spatial variation in the values of all the water quality parameters analyzed. This variation indicates a varied geochemistry in the area. Parameters like pH, EC, alkalinity, hardness and calcium were found to be within the prescribed limits for most of the water sources. Calcium concentration was low in the water sources of most of the villages monitored. Fluoride concentrations were higher than the prescribed limit of 1.5-mg/l. in drinking water sources in most of the villages. In addition to high fluoride content in ground water sources, it was also high in the surface water sources of Parwakodwari–Naibasti, Piparhawa, Kathaundhi, Kusmaha, Raspahari, Bhantawari, Rajo and Nemna villages. Fluoride concentrations were generally found to be high in water sources that had low calcium and high alkalinity.

Fluoride Concentration in Drinking Water Sources

Table 3 shows that fluoride concentrations varied between 0.2 –15.5 mg/l in all of the 1477 water sources monitored. The concentrations were observed to vary with the sources and the location in each village. Fluoride concentrations were much higher in ground water sources than the surface water sources. High fluoride concentration in the ground water is most likely due to fluoride bearing underground rock. Villages located near Beejpur and Renukoot may also be affected by fluoride emissions from the Rihand Super Thermal Power Plant and Hindalco respectively.

Villages with high fluoride concentrations sources included Parwakodwari – Naibasti, Kusmaha and Bhantawari (with sources containing >15 mg/l), Samtharhawa. (\leq 14 mg/l), Manbasa and Karamdad (both with sources above 12 mg/l), in Piparhawa (\leq 9 mg/l) and Kathauthi, Raspahari , Bardad, Nemna, Rajmilan and Bichhiyari (all with with sources containing \leq 8 mg/l).

S. No.	Village	Kind of source	No. of Sources								
				pН	EC (µmho/cm)	Total Alkalinity	Total Hardness	Calcium Hardness	Calcium as	Fluoride (mg/l)	
					•	as	as	as	CaCO3		
						CaCO3	CaCO3	CaCO3	(mg/l)		
(1)	(2)	(3)	(4)	(5)	(6)	(mg/l) (7)	(mg/l) (8)	(mg/l) (9)	(10)	(11)	
(1)	Parwa	HP	13	6.9-7.8	448-1379	200-536	140-324	18-242	10.2-97.0	3.5-11.8	
1	kudwari-Nai	PW	14	7.4-8.4	474-1378	192-628	124-266	24-174	9.6-69.8	1.7-15.5	
1	basti	DW	21	7.2-8.6	508-1173	180-784	78-388	36-176	14.4-70.6	1.2-12.3	
	Uasti	Nala HP	2 7	8.0-8.4 7.1-7.4	655-778 579-790	296-374 244-376	226-254 196-308	104-116 112-164	41.7-46.5 44.9-65.8	2.5-4.2 2.8-6.3	
	TI · · · · ·	PW	9	7.3-7.8	404-997	180-418	140-388	112-104	44.1-70.6	2.5-6.7	
2	Jhirgadandi	DW	1	7.7	790	358	222	80	32.1	5.0	
		River	1	8.1	197	84	70	70	28.1	0.40	
		HP PW	9 11	6.6-7.7 7.3-8.0	293-1055 618-958	128-570 304-468	214-428 132-258	46-210 42-174	18.4-84.2 16.8-69.8	0.2-5.50 0.7-8.10	
3	Piparhawa	DW	65	7.6-8.0	569-1065	264-544	132-238	100-164	40.1-65.8	1.3-4.5	
5	1 ipuillu vu	River	1	8.3	240	102	84	60	24.1	0.40	
		Nala	1	8.2	830	426	254	160	64.2	4.45	
		HP	24	7.1-7.7	537-986	176-426	102-280	76-190	30.5-76.2	0.9-9.8	
4	Kusmaha	PW	24	7.3-8.1 7.8-8.5	406-1076	158-522	88-466	58-264	23.8-105.9	1.0-14.8	
	Kusinana	DW	7	8.2-	748-995	276-424	148-354	104-220	41.7-88.2	2.9-6.3	
		Bandha	2	10.1	355-526	172-284	84-102	30-100	13.6-40.1	1.3-2.0	
		HP	10	7.1-7.5	540-1008	170-422	140-308	76-214	30.5-85.8	1.59-4.4	
5	Gambhirpur	PW DW	5 6	7.2-8.0 7.3-7.8	626-889 662-1224	282-344 166-354	164-346 228-528	100-188 174-212	40.1-75.4 69.8-85.0	1.4-3.5 0.9-3.2	
	-	Bandha	2	8.1-9.7	559-730	234-316	96-150	40-84	26-33.7	2.3-3.4	
		HP	26	6.6 – 7.6	375-1 223	80 - 398	114 - 422	34 - 186	13.6 - 75.6	0.2 - 2.5	
6	Khairahi	PW	18	7.2 - 8.4	456 -1414	180-582	104-328	34-146	13.6- 58.5	0.6-4.0	
		DW HP	16 41	7.1-8.3	423-1132	160-526	64-348	24-92 78-320	9.6-36.9	0.5-2.2	
		HP PW	41 58	6.8-7.9 7.2- 8.3	447-1411 393-1254	120-430 130-676	102-524 104-494	78-320 48-310	31.3-128.2 19.3-124.3	0.4-7.3 0.4-7.3	
7	D 1	DW	101	7.2-8.5	340-1359	104-622	84-564	40-356	16.0-142.7	0.5-7.9	
7	Raspahari	Bauli	2	8.1-9.0	744	312-344	194-254	80-90	32.1-36.1	6.1-7.2	
		Bandha	3	8.9-9.6	516-793	214-334	116-130	56-66	22.5-26.5	2.4-3.2	
		Nala HP	1 9	8.8 6.8-7.4	883 534-1037	428 223-476	212 140-288	60 80-168	24.1 32.1-67.4	2.0 0.5-6.7	
0	77 1 1	PW	9	68-8.0	296-1138	142-616	78-266	52-238	20.8-95.4	1.0-5.61	
8	Karamdad	DW	9	7.0-8.1	329-1166	144-522	126-286	56-198	22.5-79.4	0.6-11.9	
		Bandha	1	8.9	384	232	88	60	24.1	1.8	
		HP PW	30 22	6.5-7.6 7.0-8.3	351-1172	110-682 182-596	122-512 156-470	62-190 60-214	24.8-76.2	1.2-7.5 0.8-11.7	
9	Manbasa	PW DW	33	7.0-8.3	426-1158 445-1646	182-596	156-470 66-406	60-214 34-198	24.1-85.8 13.6-79.4	0.8-11.7	
-	1.14110404	Bauli	4	7.6-7.7	641-915	308-406	208-322	80-120	32.1-48.12	3.0-6.5	
		Nala	2	7.8	770-917	364-468	258-288	92-100	36.9-40.1	2.4-3.6	
		HP PW	31	7.0-8.0	362-1314-	240-370	102-344	20-136	8.2-54.5	0.7-7.8	
10	Kathauthi	PW DW	16 72	7.7-8.7 7.6-8.4	488-1358 495-1825	336-702 214-486	168-356 60-392	14-152 8-138	5.6-60.9 3.1-55.3	0.9-7.9 0.4-7.4	
	ixunuum	Bandha	2	8.1-8.4	484-634	-	126-196	64-48	27.3-15.2	1.6-1.9	
		Nala	1	8.3	791	-	178	24	9.62	5.29	
		HP	37	7.1-8.0	549-1152	238-478	138-388	22-256.0	8.8-102.6	0.9-5.8	
		PW DW	46 118	7.6-8.4 7.2-8.6	305-1248 520-1154	112-442 218-548	108-394 140-388	10-154.0 14-240	4.0-61.6 5.6-96.2	0.9-5.4 0.9-6.1	
11	Majhauli	Bauli	3	7.5-8.4	542-743	216-348	110-234	14-240	5.6-76.2	3.9-4.0	
		River	2	8.2-8.4	653-707	312-352	192-200	38-84	15.2-33.7	72.3-2.7	
		Bandha	1	9.3	593	276	154	28	11.2	3.8	
12	Uormorino	HP PW	5 9	6.8-7.4 7.5.8.3	292-637 282-893	-	-	-	-	1.4-4.9	
12	Harwariya	PW DW	9 12	7.5-8.3 6.8-7.8	282-893 324-637	-	-	-	-	0.7-3.7 0.6-2.9	
		HP	10	6.2-7.5	171-803	16-328	32-224	18-148	7.2-59.3	1.1-8.6	
13	Bardad	PW	22	6.4-7.5	143-1277	16-316	40-330	14-238	5.6-95.4	0.5-6.9	
15	Daluau	DW	48	6.2-7.9	142-1130	12-434	24-374	22-338	8.8-135.5	0.2-7.9	
1.4	Dela	Bauli	1	7.0	126	24	44	34	13.6	2,6	
14	Rajo	HP	9	6.9-7.9	364-602	164-322	150-310	90-202	36.1-81.0	1.2-2.9	

Table: 2. Water Quality Profile of the Different Sources of Drinking Water

		PW	4	7.0-7.7	269-335	86-190	92-240	56-118	22.5-47.3	0.9-2.4
		DW.	33	6.8-7.9	215-608	52-374	104-268	50-150	20.0-60.1	0.3-3.9
		Bauli	4	7.0-7.9	209-413	100-234	142-206	34-86	13.6-34.5	0.9-3.0
		Nala	1	8.1	425	210	180	104	41.7	2.0
		HP	8	7.0-9.0	208-812.	96-880	66-372	28-168	11.2-67.4	2.4-4.8
		PW	19	6.5-9.0	222-1461	78-668	54-286	36-260	5.0-104.3	0.4-14.8
15	Bhantawari	DW	50	6.5-9.5	153-1156	36-506	52-378	28-242	14.4-97.0	0.4-9.8
		Bauli	4	6.8-8.0	186-596	100-310	100-174	46-106	18.4-42.5	0.9-4.2
		Nala	1	8.3	372	152	Х	74	29.7	1.96
		HP	18	6.4-8.4	156-1065	50-484	62-486	42-186	16.8-74.6	1.2-4.1
		PW	22	6.8-9.9	364-1275	56-334	114-324	32-220	12.8-88.2	0.2-3.6
16	Nama	DW	50	6.6-8.2	315-1520	80-606	80-370	4-240	1.6-96.2	0.3-91
10	Nemna	Bauli	6	7.2-8.3	515-860	180-304	128-214	24-122	9.6-48.9	1.7-4.3
		Chaurha	3	7.7-8.4	491-570	292-220	96-204	96-124	38.5-49.7	1.2-2.1
		Nala	1	8.3	535	206	106	48	19.2	2.4
		HP	5	7.0-8.0	579-829	196-406	146-218	80-126	32.1-50.5	1.8-4.6
		PW	8	7.0-8.0	544-1186	128-294	86-254	44-176	17.6-70.7	2.0-11.1
17	Samtharhawa	DW	42	6.0-8.0	157-1076	40-574	54-256	30-186	12.0-74.6	0.3-14.0
		Bandha	2	6.0-7.0	184-285	52-122	44-70	34-62	13.6-24.9	0.2-0.7
		Nala	2	7.0	422-425	182-190	78-84	60-68	24.1-27.3	1.8-2.4
		HP	23	6.8-8.0	393-857	84-378	116-378	56-176	22.4-70.6	0.7-6.5
		PW	4	7.2-7.9	468-634	104-284	190-386	78-146	31.3-58.5	0.4-1.8
18	Rajmilan	DW	27	6.5-8.8	303-1203	54-730	74-462	44-250	17.6-100.2	0.4-7.8
	5	Bauli	6	7.0-9.6	309-684	122-254	82-174	56-114	22.4-45.7	0.4-4.1
		Bandha	1	9.1	118	254	64	30	12.0	0.5
		HP	3	7.1-7.2	575-1083	258-462	158-374	118-232	47.3-93.1	1.9-3.3
		PW	9	7.0-8.3	422-1080	96-488	116-390	50-262	20.0-105-1	1.0-6.5
10	Dichhirtori	DW	20	6.8-7.9	191-852	76-336	106-300	280-152	160-60.9	0.7-7.5
19	Bichhiyari	Bauli	1	8.4	708	322	138	70	28.0	3.2
		Bandha	1	8.1	311	120	100	60	24.1	0.9
		River	2	7.6-8.6	459-698	208-254	154-182	84-86	33.7-34.5	1.9-2.1

HP – Handpump; PW – Pucca well; DW – Dug well

In general, fluoride concentrations were in a similar range in hand pumps, pucca wells and dug wells. In Chetwa, Ammadad, Harwariya, Bardad and Rajo Bhantawari and Nemna, however, fluoride concentrations were higher in hand pumps than the open wells. It seems that the upper rocks strata contain lower amounts of fluoride as compared to the deeper strata. Due to the undulating topography of the area, however, it is not possible to make any generalization about the depth to which safe water can be found

Relationship Between Severity of Fluorosis and Fluoride Concentrations

Data showing the relationship between the severity of fluorosis and fluoride concentrations was extracted from the fluorosis mapping exercises and the water quality monitoring exercises. It is summarized in Table 4. The average fluoride concentrations in drinking water corresponding to different degrees of severity of fluorosis were also calculated and shown in Table 5 and Fig. 1.

The ill-effects of fluorides in drinking water depend upon several factors, e.g., nutrition of the person at risk, the exposure period, etc.⁽¹⁾ Hence the same level of exposure to fluorides can have different effects on different people. Varying concentrations of fluoride in drinking water cause different degrees of fluorosis in Sonebhadra district. Table 4 shows that cases of mild dental fluorosis (discolouration of teeth) occur at fluoride concentrations as low as 2 mg/l. About 80% of the moderate dental fluorosis (appearance of striations on teeth) cases are associated with sources containing >3 mg/l. The average fluoride concentration for severe dental fluorosis (loss of teeth) is about 5 mg/l. While three persons using water containing above 3 mg/l reported mild skeletal fluorosis (aching joints but no visible stiffening), the average for the remaining 30 cases was above 7 mg/l. Crippling skeletal fluorosis (inability to walk without support) on the other hand most likely sets in due to exposure to fluoride concentration of more than 9.5 mg/l.

S. No.	Range of Fluoride (mg/l)		Nu	mber of	f Drinki	ng Water S	Sources		Tot	ol
	(iiig/1)	HP	PW	DW	Bauli	Bandha	River	Nala	100	al
1	2	3	4	5	6	7	8	9	(10)No.	(11)%
1.	– Parwakodwari – Nai	_					Ũ		(10)1(0)	(11)/0
	1.2 - 2.0	-	1	4	-	-	-	-	5	10
	2.1 - 6.0	9	9	14	-	-	-	2	34	70
	6.1 - 10.0	1	2	2	-	-	-	-	5	10
	>10	2	2	1	-	-	-	-	5	10
2.	Jhirgadandi				<u>.</u>					
	0.4 - 2.0	-	1	-	-	-	1	-	2	11
	2.1-6.0	6	7	1	-	-	-	-	14	78
	6.1 - 10.0	1	1	-	-	-	-	-	2	11
3.	Piprahawa									
	0.2 - 2.0	2	1	1	-	-	1	-	5	19
	2.1 - 6.0	7	8	4	-	-	-	1	20	74
	6.1 - 10.0	-	2	-	-	-	-	-	2	7
4.	Kushmaha									-
	0.9 - 2.0	6	9	-	-	1	-	-	16	28
	2.1 - 6.0	16	12	6	-	1	-	-	36	63
	6.1 – 10.0	2	1	1	-	-	-	-	4	7
	>10	-	1	-	-	-	-	-	1	2
5.	Gambhirpur									
	0.9 - 2.0	2	2	4	-	-	-	-	8	35
	2.1 - 6.0	8	3	2	-	2	-	-	15	65
6.	Khairahi									1
	0.2 - 2.0	20	10	10	-	-	-	-	40	67
	2.1 - 6.0	6	8	6	-	-	-	-	20	33
7.	Raspahari	. <u> </u>		. <u> </u>		. <u> </u>			1	
	0.4 - 2.0	20	27	44	-	-	1	1	93	45
	2.1 - 6.0	20	30	55	-	2	-	-	107	52
	6.1 – 10	1	1	2	2	-	-	-	6	3
8.	Karamdad		1		,	1	,		10	25
	0.5 - 2.0	6	1	2	-	1	-	-	10	36
	2.1 - 6.0	2	8	6	-	-	-	-	16	58
	6.1 - 10.0	1	-	-	-	-	-	-	1	3
0	>10	-	-	1	-	-	-	-	1	5
9.	Manbasa 0.8 – 2.0	6	4	8	, 		,		18	20
	0.8 - 2.0 2.1 - 6.0	6 21	4	8 21	- 3	-	-	-		<u> </u>
	2.1 - 6.0 6.1 - 10.0	3	2	5	<u> </u>	-	1	-	61 11	12
	>10	-	<u>2</u> 1			-	-	-	11	12
10.	Kathaundhi	_	1	-	-	-	-	-	1	1
10.	0.4 – 2.0	10	7	25	1	2	,		44	36
	0.4 - 2.0 2.1 - 6.0	20	7	40	-		- 1	-	68	56
	6.1 - 10.0	1	2	40		-		-	10	7
	0.1 - 10.0	1	<i>L</i>	1	-	-	-	-	10	/

.Table: 3, Fluoride Concentrations in Different Sources of Drinking Water

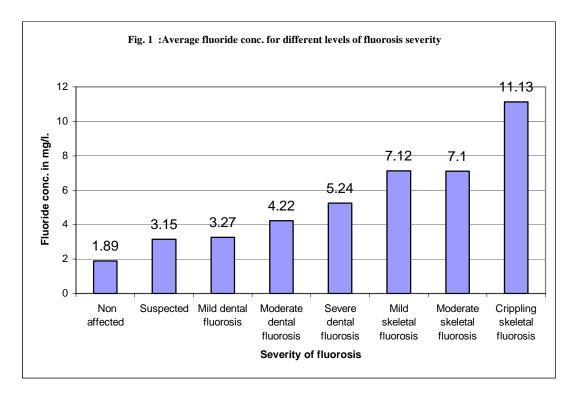
11.	Majhauli									
	0.9 - 2.0	11	17	38	1	-	-	-	67	32.5
	2.1 - 6.0	26	29	79	2	1	2	-	139	67
	6.1 - 10.0	-	-	1	-	-	-	-	1	0.5
1	2	3	4	5	6	7	8	9	10	11
12.	Chetwa									
	0.1 - 2.0	20	11	20	-	-	-	-	51	82
	2.1 - 6.0	7	2	2	-	-	-	-	11	18
13.	Ammadad									
	0.3 - 2.0	2	2	15	-	-	-	-	19	65
	2.1 - 6.0	2	1	7	-	-	-	-	10	35
14.	Harwariya									
	0.6 - 2.0	4	4	9	-	-	-	-	17	65
	2.1 - 6.0	1	5	3	-	-	-	-	9	35
15.	Bardad									
	0.2 - 2.0	3	6	26	-	-	-	-	35	43
	2.1 - 6.0	6	15	21	1	-	-	-	43	53
	6.1 – 10.0	1	1	1	-	-	-	-	3	4
16.	Rajo									
	0.3 – 2.0	4	3	22	3	-	-	1	33	65
	2.1 - 6.0	5	1	11	1	-	-	-	18	35
17.	Bhantawari									
	0.4 - 2.0	4	8	33	3	-	-	1	49	58
	2.1 - 6.0	4	8	14	1	-	-	2	29	35
	6.1 – 10.0	-	2	3	-	-	-	-	5	6
	>10	-	1	-	-	-	-	-	1	1
18.	Nemna									
	0.2 - 2.0	7	14	22	2	-	-	-	45	45
	2.1 - 6.0	11	8	27	4	-	-	1	51	51
	6.1 – 10	-	-	4	-	-	-	-	4	4
19.	Samtharahawa									
	0.2 - 2.0	2	1	14	-	2	-	1	20	34
	2.1 - 6.0	3	6	23	-	-	-	1	33	56
	6.1 – 10	-	-	4	-	-	-	-	4	7
	>10	-	1	1	-	-	-	-	2	3
20.	Rajmilan	1			[1		1		
	0.4 - 2.0	8	4	15	3	1	-	-	31	51
	2.1 - 6.0	14	-	10	3	-	-	-	27	44
	6.1 – 10	1	-	2	-	-	-	-	3	5
21.	Bichhiyari			1	[1			
	0.7 - 2.0	1	3	14	-	1	-	1	20	55
	2.1 - 6.0	2	5	5	1	-	-	1	14	38
	6.1 – 10	-	1	1	-	-	-	-	2	7

Total Monitored Sources – 1477, (-) Not found Index ; HP – Hand pump, PW – Pucca well, DW – Dug well Fluoride: < 2 mg/l – Acceptable, 2.1 – 6.0 – Harmful, 6.1 – 10 – Dangerous >10.0 – Very Dangerous

Fluoride conc.						S	everity	of Flu	orosis							
in drinking water			D	ental	Fluoro	osis	•						Skeletal	Fluor	rosis	
(mg/l)	Non aff	ected	Suspe	cted	Mi	ld	Mode	rate	Seve	ere	Mi	ld	Mode	rate	Cripp	ling
1	2		3		4		5		6		7		8		9	
	No.	%	No.	%	No.	%	No.	%	No.	%	No.	%	No.	%	No.	%
<2.0	50	65	3	14	14	10	*	*	*	*	*	*	*	*	*	*
2.1-2.5	15	19	3	14	38	29	7	11	*	*	*	*	*	*	*	*
2.6-3.0	2	3	5	23	15	11	7	11	1	11	*	*	*	*	*	*
3.1-3.5	2	3	1	4	13	10	12	18	1	11	2	6	*	*	2	5
3.6-4.0	3	4	5	23	14	10	16	24	2	22	*	*	*	*	*	*
4.1-4.5	4	5	5	23	18	14	6	9	2	22	1	3	2	11	*	*
4.6-5.0	*	*	*	*	7	5	4	6	*	*	*	*	*	*	*	*
5.1-5.5	1	1	*	*	6	5	4	6	*	*	*	*	*	*	*	*
5.6-6.0	*	*	*	*	2	2	4	6	1	11	*	*	*	*	*	*
6.1-6.5	*	*	*	*	1	1	1	2	*	*	11	33	1	5	*	*
6.6-7.0	*	*	*	*	*	*	*	*	1	11	4	12	8	42	1	3
7.1-7.5	*	*	*	*	3	2	1	2	*	*	3	9	3	16	*	*
7.6-8.0	*	*	*	*	*	*	2	3	*	*	7	21	3	16	1	3
8.1-8.5	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
8.6-9.0	*	*	*	*	1	1	*	*	*	*	*	*	*	*	1	3
9.1-9.5	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
9.6-10.0	*	*	*	*	*	*	*	*	*	*	3	9	1	5	6	15
>10.0	*	*	*	*	1	1	2	3	1	11	2	6	1	5	28	78
Total	77		22		133		66		9		33		19		39	

Table: 4 Fluoride Concentrations in Drinking Water and The Severity of Fluorosis

* Not found


Table 5, Average fluoride concentration for different severity levels of fluorosis

Severity of fluorosis	Number of cases	Average fluoride conc. in drinking water(mg/l)
Non affected	77	1.89
Suspected	22	3.15
Mild dental fluorosis	143	3.27
Moderate dental fluorosis	66	4.22
Severe dental fluorosis	9	5.24
Mild skeletal fluorosis	33	7.12
Moderate skeletal fluorosis	19	7.1
Crippling skeletal fluorosis	39	11.13

Strategies for Fluorosis Mitigation and Control

The data on fluoride concentrations in the water from the different sources and the extent of fluorosis prevalence was shared with the communities at well-attended meetings in each village. These meetings were also used to raise awareness about various aspects of the subject. The communities were informed about:

- The causes and harmful effects of fluorosis
- Nutritional interventions
- Certain precautions in fighting the disease
- Safe drinking water, a fundamental right
- Alternative sources of safe drinking water in respect to fluoride concentration

- Regular monitoring of water quality particularly with respect to fluoride concentration
- Sensitization of different groups within the society and the administration about fluorosis and their mitigation measures

Separate meetings were held with the community in each village to determine ways of accessing water supply with safe levels of fluorides. Among the options considered were:

- i) Extending access to existing drinking water sources containing less than 1.5mg/l fluoride concentration
- ii) Renovation or construction of sanitary wells at existing wells with less than 1.5mg/l fluoride concentration
- iii) Installation of tube wells at locations of safe water
- iv) Roof rainwater harvesting
- v) Deflouridation of water using Nalgonda technique, activated alumina or reverse osmosis

As a demonstration, activated alumina based domestic deflouridation kits were provided to five families. Later the district administration also distributed similar kits in Parwakodwari. To meet the increasing demand for such kits at a later time, PSI offered to establish a kitrecharging facility at BSA's campus. Flouride removal efficiencies of the kits distributed were tested and the data (Table 6) were shared with the communities.

S.N.	Name of the AA kit user	Conc. of Fluoride in the inlet (mg/l)				
1	Rohan	11.6	3.2	72.4		
2	Vindhyachal Sharma	11.6	1.82	84.3		
3	Jai Ram Prasad	1.66	0.45	72.9		
4	Manik Chandra	7.69	3.2	58.4		
5	Parikha Patel	3.34	0.43	87.1		
6	Rajkumar *	3	2.1	30		
7	Neeraj	2.21	0.4	82		

Table: 6, Defluoridation efficiency of Activated Alumina (AA) Kits

* Kit was provided by district administration & examined 2 months after distribution.

Based on these discussions and information about the costs and appropriate management systems for each option, each village prepared a detailed fluorosis mitigation plan. The proposals for accessing fluoride-free water are summarized in Table 7. They cover 2146 households out of the total 3875 households in the 21 targetted villages. The estimated cost of Rs 80,70,000.00 works out to an approximate cost of Rs 632 per beneficiary. Among the possible sources of funds identified with the help of the villagers were:

- Village Panchayats: They can implement mitigation measures upto Rs50,000 per year
- Industries like Hindalco, NTPC or Kanoria Chemicals in Renukoot who are engaged in implementing community welfare and development activities in the region
- The Singrauli Special Area Development Authority which is responsible for implementing development plans at the village level
- Voluntary organizations in the area
- Rajiv Gandhi National Drinking Water Mission

S.	Mitigation Measure	No.	Estimated	Number of		
No.			Cost Rs.	Beneficiaries		
1	Conversion of existing safe dug well into a sanitary well	62	25,62,000.00	830 households		
2	Conversion of existing safe concrete well into a sanitary well	23	6,00,000.00			
3	Hand Pump with attached AA kit	48	3,84,000.00	735 households and 970 school children		
				of 9 schools		
4	Borewell with hand pump and attached AA kit	2	1,70,000.00	20 households		
5	AA Domestic kit	543	5,43,000.00	543 household		
6	Individual Roof rain water harvesting	1	22,000.00	1 household		
7	Community Roof rain water harvesting	2	3,33,000.00	17 households		
8	Total		80,70,000.00	2146 household and 970 school children		

Table 7: Summary of Proposals for Fluorosis Mitigation in the Targetted Villages

ACKNOWLEDGEMENT

This project has been made possible with a grant from The Ford Foundation, New Delhi. The authors are grateful to Dr G D Agrawal, Hon. Professor, Mahatma Gandhi Gramodaya Vishwavidyalaya, Chitrakoot (M.P.) and Dr Ragini Prem for providing guidance and support. The field assistance of the Banwasi Seva Ashram staff is gratefully acknowledged.

REFERENCES

- 1. SUSHEELA, A.K. : <u>A Treatise on Fluorosis</u>, Fluorosis Research and Rural Development Foundation, New Delhi, 2001.
- 2. <u>Standard Methods for the Examination of Water and Wastewater</u>, American Public Health Association, 1998.